

FREVUE Freight Electric Vehicles in Urban Europe

GLA Group Fleet Meeting 08 December 2017

Agenda

- FREVUE project overview
- FREVUE vehicles
- Technical suitability
- Economics
- Environmental impacts
- Other findings

Objectives

Demonstrate suitability of electric freight vehicles for urban last-mile deliveries

Underpin future uptake of these vehicles

Provide evidence for policy intervention

FREVUE Vehicles

Example of 12t vehicle: Heineken

Supplier: Ginaf (NL)

Payload: 4t; Load volume: 25 m3

Battery capacity: 120 kWh; Range: 125 km

Example of 18t vehicle: Heineken

Example of 19t vehicle: Breytner

Supplier: EMOSS

Technical suitability - Data

- Dynamic vehicle data with state-of-charge from 10 operators and 83 vehicles
- Covering 757,000 km –
 19 times around the Earth at the equator

Technical suitability

Km per kWh, temperature and weight group

Technical suitability Energy usage taking GVW into account

Technical suitability Range – Mixed messages

- Operators consistently ask for more range
- FREVUE research shows that range sufficient for most urban freight operations
- Range perception changes over time

Technical suitability Charging

- Most operators charge once a day at night at the depot
- Some, especially the smaller ones, opportunity charge during the day, typically at lunch time
- Grid infrastructure constraints
- Most large vehicles have excess battery capacity
- Inner city fast charging infrastructure and new battery packs with higher capacity will further remove barriers

Environmental impact

- Low penetration level (10%), 2021:
 - NOx reduction of 402Kt
 - PM reduction of 3.8t
 - Local GHG savings of 284Kt CO₂e
- Monetisation, 10% penetration level, 2021:

Monetary savings from NOx reductions

£881 million

Monetary savings from CO2 reductions

£13 million

Direct impacts - Noise

- Many factors contribute to road traffic noises, including vehicle, road, geo-spatial and weather related parameters
- However, EFVs only reduce engine noise
- In the FREVUE project, the impacts are impossible to measure
- Previous studies show that noise reductions from an EFV significant at lower speed

Economics of EVs for City Logistics

 A positive business case is achievable for small and medium EFVs

 For large EFVs this remains difficult

TCO comparison (small EFV)

TCO comparison medium EFV

TCO comparison large EFV

Attitudes towards EFVs

Question to fleet managers: Are EFVs a viable alternative to ICEs?

Thank you

Tanja Dalle-Muenchmeyer tanjadallemuenchmeyer@crossriverpartnership.org

